GNSS 导航模拟器对 GNSS 信号特性的模拟十分精确。它能精确复现卫星信号的伪随机噪声码,确保每个卫星的码序列与真实情况一致,从而使接收机能够准确识别卫星。在信号强度模拟方面,可根据卫星与接收机的相对位置、传播距离以及各种干扰因素,精确调节信号强度,范围从强信号的 - 120dBm 左右到弱信号的 - 160dBm 以下,模拟不同环境下信号强度的变化。同时,模拟器还能模拟信号的多普勒频移,根据接收机与卫星的相对运动速度,精确调整信号频率,真实反映动态场景下信号频率的改变,为接收机的动态定位性能测试提供保障。GPS 模拟器模拟真实 GPS 信号环境,用于测试定位设备性能。船载型GPS卫星模拟器录制回放
科研工作中,GNSS 模拟器为众多研究提供了重要支撑。在地球物理学研究方面,科研人员利用模拟器模拟不同地球物理条件下的卫星信号传播情况,研究电离层、对流层变化对信号的影响,进而深入了解地球大气结构与动力学。在天文学研究中,通过模拟卫星信号在星际空间的传播,探索信号受太阳风、引力场等因素干扰的规律,为星际导航研究提供数据基础。在新型定位算法研发中,科研人员借助模拟器生成大量不同场景的卫星信号数据,用于训练和验证新算法,如基于深度学习的定位算法,提升定位精度和抗干扰能力,推动导航技术不断创新发展。全频点信号仿真GPS卫星信号模拟器供应商GPS 模拟器模拟高速移动场景,测试定位设备动态性能。
GNSS 接收器工作时,首要步骤是捕获卫星信号。它通过搜索特定频段,如 GPS 的 L1、L2 频段,北斗的 B1、B2 频段等,识别出卫星发射的伪随机噪声(PRN)码。一旦捕获到信号,便进入跟踪阶段,持续锁定卫星信号,确保稳定接收。在解算环节,接收器利用接收到的多个卫星信号的时间延迟,结合卫星轨道信息,运用三角测量原理计算自身位置。例如,通过测量信号从三颗卫星传播到接收器的时间差,确定以卫星为球心、传播距离为半径的三个球面,其交点即为接收器位置。同时,接收器还能根据信号频率的多普勒频移计算速度,依据时间信息实现时钟同步。
除了基础的导航信号模拟,GNSS 导航模拟器还具备多种拓展功能。一些模拟器支持多系统联合模拟,不能同时模拟 GPS、北斗、GLONASS 等多个卫星导航系统的信号,还能模拟不同系统信号之间的相互干扰与协同工作情况,为多系统融合导航设备的研发提供多方面测试。部分模拟器具备信号干扰模拟功能,可生成窄带干扰、宽带干扰等多种干扰信号,与正常 GNSS 信号叠加,测试接收机在干扰环境下的抗干扰能力与定位稳定性。此外,有的模拟器还能模拟时间同步信号,用于测试对时间精度要求极高的应用场景,如电力系统的时间同步设备。GPS 卫星模拟器模拟卫星钟差,检测定位精度影响。
GNSS 模拟器依托高性能硬件构建。其重心信号生成模块配备了先进的数字信号处理器(DSP),具备强大的运算能力,能够实时处理复杂的卫星信号生成算法。例如,面对大量卫星轨道数据的快速运算需求,DSP 可高效完成,确保信号生成的及时性与准确性。同时,采用现场可编程门阵列(FPGA)技术,使硬件具备高度的灵活性。研发人员能根据不同的测试需求,灵活配置信号生成流程,快速实现对不同卫星系统信号特征的模拟。高精度的时钟源也是关键硬件组件,像原子钟提供的超高稳定性时间基准,保障了模拟器生成信号的时间精度,让多卫星信号间的同步误差极小,为模拟真实卫星信号环境奠定坚实基础。GPS 模拟器模拟隧道内信号,测试定位设备适应性。LabSatgnss卫星模拟器录制回放
GNSS 卫星信号模拟器调整信号编码,测试接收机解码能力。船载型GPS卫星模拟器录制回放
GPS 轨迹模拟器通过模拟卫星信号与接收机之间的交互来生成轨迹数据。它首先依据预设的地理位置信息和运动参数,如起点坐标、终点坐标、行进速度、加速度等,构建一个虚拟的运动模型。利用卫星定位原理,将运动过程离散化为一系列时间节点,在每个节点上根据模型计算出对应的模拟 GPS 坐标。例如,以匀加速直线运动为例,根据运动学公式计算不同时刻物体所在位置,转化为经纬度坐标。这些坐标信息按照 GPS 数据格式进行编码,生成模拟的 GPS 轨迹数据,如同真实的 GPS 接收机在该运动过程中接收到并记录的数据一样,为后续分析和应用提供基础。船载型GPS卫星模拟器录制回放
深圳市璟晨实业发展有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。